Coloring Eulerian Triangulations of the Klein Bottle
نویسندگان
چکیده
We show that an Eulerian triangulation of the Klein bottle has chromatic number equal to six if and only if it contains a complete graph of order six, and it is 5-colorable, otherwise. As a consequence of our proof, we derive that every Eulerian triangulation of the Klein bottle with facewidth at least four is 5-colorable.
منابع مشابه
Small snarks and 6-chromatic triangulations on the Klein bottle
It is known that for every nonorientable surface there are infinitely many (large) snarks that can be polyhedrally embedded on that surface. We take a dual approach to the embedding of snarks on the Klein bottle, and investigate edge-colorings of 6-chromatic triangulations of the Klein bottle. In the process, we discover the smallest snarks that can be polyhedrally embedded on the Klein bottle....
متن کاملNote on the irreducible triangulations of the Klein bottle
We give the complete list of the 29 irreducible triangulations of the Klein bottle. We show how the construction of Lawrencenko and Negami, which listed only 25 such irreducible triangulations, can be modified at two points to produce the 4 additional irreducible triangulations of the Klein bottle.
متن کاملA new proof of 3-colorability of Eulerian triangulations
Using the existence of noncrossing Eulerian circuits in Eulerian plane graphs, we give a short constructive proof of the theorem of Heawood that Eulerian triangulations are 3-colorable.
متن کاملColoring Eulerian triangulations of the projective plane
A simple characterization of the 3, 4, or 5-colorable Eulerian triangulations of the projective plane is given.
متن کاملDiagonal flips in outer-Klein-bottle triangulations
We determine the complete list of the irreducible outer-Klein-bottle triangulations, and we prove that any two outer-Klein-bottle triangulations with the same number of vertices can be transformed into each other by a sequence of diagonal ips, up to homeomorphism. c © 2000 Elsevier Science B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 28 شماره
صفحات -
تاریخ انتشار 2012